Optimum-Point Formulas for Osculatory and Hyperosculatory Interpolation

By Herbert E. Salzer

Abstract

Formulas are given for n-point osculatory and hyperosculatory (as well as ordinary) polynomial interpolation for $f(x)$, over ($-1,1$), in terms of $f\left(x_{i}\right), f^{\prime}\left(x_{i}\right)$ and $f^{\prime \prime}\left(x_{i}\right)$ at the irregularly-spaced Chebyshev points $x_{i}=-\cos$ $\{(2 i-1) \pi / 2 n\}, i=1, \cdots, n$. The advantage over corresponding formulas for x_{i} equally spaced is in the squaring and cubing, in the respective osculatory and hyperosculatory formulas, of the approximate ratio of upper bounds for the remainder in ordinary interpolation using Chebyshev and equal spacing (e.g., for $n=10$, the 15 per cent ratio for ordinary interpolation becoming 2.4 per cent and 0.37 per cent for osculatory and hyperosculatory interpolation). The upper bounds for the remainders in these optimum n-point r-ply confluent formulas (here $r=1$ and 2) are around 2^{r} times those of the optimum $\{(r+1) n\}$-point non-confluent formulas. But these present confluent formulas may require fewer computations for irregular arguments when $f(x)$ satisfies a simple first or second-order differential equation. To facilitate computation, for $n=2(1) 10$, auxiliary quantities a_{i}, b_{i} and $c_{i}, i=1, \cdots, n$, independent of x, are tabulated exactly or to 15 S , not precisely for the optimum points, but for those Chebyshev arguments rounded to 2 D ("near-optimum" points). At the very worst ($n=9$, hyperosculatory) this change about doubles the remainder, which is still less than $\left(\frac{1}{50}\right)$ th of the remainder in the corresponding equally-spaced formula.

1. Advantage Over Equal-Interval Formulas. Formulas are given here for n-point osculatory and hyperosculatory polynomial interpolation for $f(x)$, from prescribed values of $f(x)$ with its first, or first and second derivatives at the ir-regularly-spaced Chebyshev points $x_{n-i+1}=\cos \{(2 i-1) \pi / 2 n\}, i=1,2, \cdots, n$, instead of equally-spaced points. In this notation, $x_{i}=-x_{n-i+1}$ and x_{i} increases with i. For the sake of completeness, the ordinary Lagrangian interpolation formulas are also given for these Chebyshev points. All n-point ordinary, osculatory and hyperosculatory formulas given here are exact for $f(x)$ a polynomial of degree $n-1,2 n-1$ and $3 n-1$ respectively.

The advantage of Chebyshev-point over equal-interval polynomial interpolation formulas is apparent from the factor $\Pi(x) \equiv \Pi_{i=1}^{n}\left(x-x_{i}\right)$ in the remainder term, which is $\Pi(x) f^{(n)}(\xi) / n$! for n-point ordinary Lagrangian interpolation, $\{\Pi(x)\}^{2} f^{(2 n)}(\xi) /(2 n)$! for n-point osculatory interpolation and $\{\Pi(x)\}^{3} f^{(3 n)}(\xi) /(3 n)$! for n-point hyperosculatory interpolation. At the moment, in order to compare Chebyshev-point with equal-interval formulas, let the range of x be $(-1,1)$, since the relative improvement of the former over the latter is unchanged under any linear transformation. For x_{i} at the Chebyshev points, $|\Pi(x)| \leqq\left(\frac{1}{2}\right)^{n-1}$, which is a fraction of the upper bound of $|\Pi(x)|$ for equally-spaced x_{i} 's. However, that fraction is not impressively small, decreasing rather slowly with increasing n (except

Schedule 1: Upper Bound for Absolute Value of Coefficient of $f^{(m)}(\xi)$

n	Ordinary: $m=n$		Osculatory: $m=2 n$		Hyperosculatory:$m=3 n$	
	$U . B$.	Ratio to U.B. for equal spacing	U.B.	Ratio to U.B. for equal spacing	U.B.	Ratio to U.B. for equal spacing
2	. 250	50%	. (1) 104	25%	.(3)174	$12 \frac{1}{2} \%$
3	. (1)417	65\%	. (4) 868	42 \%	. (7)431	27%
4	. (2) 521	63%	. (6)388	40%	. (11)408	25%
5	. (3)521	55%	. (8)108	30%	. (15)187	17 \%
6	. (4)434	45%	. (11)204	20%	. (20)477	9.2\%
7	. (5)310	36%	. (14)280	13%	. (25)747	4.5%
8	. (6)194	27 \%	. (17)292	7.6%	. (30)769	2.1\%
9	. (7)108	21%	. (20)238	4.3%	. (35)547	0.90%
10	. (9)538	15%	. (23)157	2.4\%	. (40)281	0.37 \%

for a slight increase from $n=2$ to $n=3$) being somewhat larger than $\frac{1}{9}$ for $n=11$. Thus ordinary Lagrangian interpolation at Chebyshev points, even for $n=9$ or 10 , gains less than one full decimal place accuracy over interpolation at equallyspaced points. But in the osculatory and hyperosculatory cases, the $\{\Pi(x)\}^{2}$ and $\{\Pi(x)\}^{3}$ in the remainder term squares and cubes the relative improvement of the Chebyshev-point formulas. For instance, when $n=10$ the approximately 15 per cent ratio in the upper bounds of $|\Pi(x)|$ for the Chebyshev and equally-spaced points is now replaced by only around 2 per cent and 0.4 per cent in the ratios of the upper bounds of $\{\Pi(x)\}^{2}$ and $\left|\{\Pi(x)\}^{3}\right|$ respectively.

In Schedule 1, we give the upper bound for the absolute value of the coefficient of $f^{(m)}(\xi),-1 \leqq \xi \leqq 1, m=n, 2 n$ and $3 n$, in the remainder term of the n-point ordinary, osculatory and hyperosculatory interpolation formulas, for $n=2(1) 10$ to 3 S. These bounds are, of course, $1 / 2^{n-1} n!, 1 / 2^{2 n-2}(2 n)!$ and $1 / 2^{3 n-3}(3 n)$! respectively. Next to each upper bound is the ratio, in per cent, of that quantity to the corresponding upper bound when the n points x_{i} are equally-spaced over $(-1,1)$. The quantity in parentheses indicates the number of zeros between the decimal point and the first significant digit.
2. Comparison with Non-Osculatory Chebyshev-Point Formulas. The upper bounds for $\{\Pi(x)\}^{2}$ and $\left|\{\Pi(x)\}^{3}\right|$ in the n-point Chebyshev osculatory and hyperosculatory formulas are $\left(\frac{1}{2}\right)^{2 n-2}$ and $\left(\frac{1}{2}\right)^{3 n-3}$ respectively, which is only twice and four times the upper bounds of $\left(\frac{1}{2}\right)^{2 n-1}$ and $\left(\frac{1}{2}\right)^{3 n-1}$ for $|\Pi(x)|$ in the $2 n$ - and $3 n$-point opti-mum-point (non-confluent) formulas of the same degree of accuracy, namely, for x_{i} at the zeros of the Chebyshev polynomials $T_{2 n}(x)=\left(\frac{1}{2}\right)^{2 n-1} \cos \left(2 n \cos ^{-1} x\right)$ and $T_{3 n}(x)=\left(\frac{1}{2}\right)^{3 n-1} \cos \left(3 n \cos ^{-1} x\right)$. This two-and four-ratio is unchanged, of course, under a linear transformation to any range (a, b) other than ($-1,1$), because the factor of $\{(b-a) / 2\}^{2 n}$ or $\{(b-a) / 2\}^{3 n}$ which then enters the remainder term is the same for both confluent and non-confluent forms of the interpolation formulas.

The confluent Chebyshev-point formulas given here, while not quite as ac-
curate as the non-confluent Chebyshev-point formulas of the same degree, have this advantage: For irregularly-spaced values of x_{i}, it is often less work to compute n values of $y_{i} \equiv f\left(x_{i}\right)$ together with $y_{i}{ }^{\prime} \equiv f^{\prime}\left(x_{i}\right)$, or with $y_{i}{ }^{\prime}$ and $y_{i}^{\prime \prime} \equiv f^{\prime \prime}\left(x_{i}\right)$, instead of $2 n$ or $3 n$ values of y_{i}. For instance, in the osculatory case $y=f(x)$ might satisfy a rather simple first-order differential equation $y^{\prime}=\boldsymbol{\phi}(x, y)$ where it is easier to obtain n values of $y_{i}{ }^{\prime}=\phi\left(x_{i}, y_{i}\right)$ after y_{i} has been calculated than to compute n more values of y_{i}. The most obvious example is when $\phi(x, y)=y$, where $y=e^{x}$ and obtaining $y_{i}{ }^{\prime}=y_{i}$ involves no extra work at all. In the hyperosculatory case y might satisfy a simple second-order differential equation from which $y_{i}{ }^{\prime \prime}$ is readily obtained from y_{i} and $y_{i}{ }^{\prime}$.
3. Interpolation Formulas. We shall not repeat here the derivations of the interpolation formulas, since they have been given a number of times, as well as a full discussion of their advantages, efficient arrangement, remainder terms, extension to inverse and complex interpolation, etc., in previous articles [1]-[3]. In (1)-(14) below, n is understood, i ranges from 1 to $n, f \equiv f(x), f_{i} \equiv f\left(x_{i}\right)$, $f_{\imath}^{\prime} \equiv f^{\prime}\left(x_{i}\right), f_{i}^{\prime \prime} \equiv f^{\prime \prime}\left(x_{i}\right)$ and \sum denotes $\sum_{i=1}^{n}$. We employ quantities $p_{i j}, q_{2}$, r_{i} and s_{i} given by

$$
\left\{\begin{array}{l}
p_{i j}=1 /\left(x_{i}-x_{j}\right), j \neq i ; \quad q_{i}=\sum_{j=1, j \neq i}^{n} p_{i j} \tag{1}\\
r_{i}=q_{i}^{2} ; \quad s_{i}=\sum_{j=1, j \neq i}^{n} p_{i j}^{2}
\end{array}\right.
$$

For each n we define first

$$
\begin{equation*}
A_{i}=\prod_{j=1, j \neq i}^{n} p_{i j} \tag{2}
\end{equation*}
$$

For ordinary interpolation we define

$$
\begin{equation*}
a_{i}=k_{1}\left(n_{i}\right) A_{i} \tag{3}
\end{equation*}
$$

For osculatory interpolation we define

$$
\left\{\begin{array}{l}
a_{i}=k_{2}(n) A_{i}{ }^{2} \tag{4}\\
b_{i}=-2 q_{i} a_{i}=-2 k_{2}(n) q_{i} A_{i}{ }^{2}
\end{array}\right.
$$

For hyperosculatory interpolation we define

$$
\left\{\begin{array}{l}
a_{i}=k_{3}(n) A_{i}{ }^{3} \tag{5}\\
b_{i}=-3 q_{i} a_{i}=-3 k_{3}(n) q_{i} A_{i}^{3} \\
c_{i}=a_{i}\left[\frac{9}{2} r_{i}+\frac{3}{2} s_{i}\right]=k_{3}(n)\left[\frac{9}{2} r_{i}+\frac{3}{2} s_{i}\right] A_{i}{ }^{3}
\end{array}\right.
$$

In (3)-(5), the $k_{m}(n), m=1,2,3$, denote suitably chosen constants that do not affect the results of the interpolation in formulas (7), (10) and (14), but which might (and this depends upon the values and functional nature of the arguments x_{i}) facilitate appreciably the calculation and use of the auxiliary quantities a_{i}, a_{i} and b_{i}, or a_{i}, b_{i} and c_{i} in (6)-(14).

For ordinary n-point interpolation, of $(n-1)$ th degree accuracy, we obtain

$$
\begin{gather*}
\alpha_{i}=a_{i} /\left(x-x_{i}\right), \text { from which } \tag{6}\\
f \sim \Sigma \alpha_{i} f_{i} / \Sigma \alpha_{i} . \tag{7}
\end{gather*}
$$

For n-point polynomial osculatory interpolation of $(2 n-1)$ th degree accuracy, we obtain

$$
\begin{align*}
\beta_{i} & =a_{i} /\left(x-x_{i}\right) \tag{8}\\
\alpha_{i} & =\left(\beta_{i}+b_{i}\right) /\left(x-x_{i}\right), \quad \text { from which } \tag{9}\\
f & \sim \Sigma\left(\alpha_{i} f_{i}+\beta_{2} f_{i}^{\prime}\right) / \Sigma \alpha_{i} \tag{10}
\end{align*}
$$

For n-point polynomial hyperosculatory interpolation of $(3 n-1)$ th degree accuracy, we obtain

$$
\begin{align*}
\gamma_{i} & =a_{i} / 2\left(x-x_{i}\right), \tag{11}\\
\beta_{i} & =\left(2 \gamma_{i}+b_{i}\right) /\left(x-x_{i}\right), \tag{12}\\
\alpha_{i} & =\left(\beta_{i}+c_{i}\right) /\left(x-x_{i}\right), \quad \text { from which } \tag{13}\\
f & \sim \Sigma\left(\alpha_{i} f_{i}+\beta_{i} f_{i}^{\prime}+\gamma_{i} f_{i}^{\prime \prime}\right) / \Sigma \alpha_{i} \tag{14}
\end{align*}
$$

4. Use of "Near-Optimum" Points. Instead of taking the x_{i} precisely equal to the zeros of $T_{n}(x)$, we now round them off to two decimal places. This makes the osculatory and hyperosculatory formulas "near-optimum" rather than "optimum" point formulas. Three reasons for such a choice are: 1) easier calculation and checking of the table of the auxiliary quantities a_{i}, b_{i} and c_{i} occurring in the interpolation formulas (7), (10) and (14);2) some of the a_{i}, for the lower values of n, can be given exactly with much fewer than 15 significant figures; 3) for many functions $f(x)$, it is less work to calculate $f\left(x_{i}\right)$ when x_{i} is an exact two-decimal argument.

The employment of rounded-off zeros of $T_{n}(x)$ as the arguments x_{i} was suggested by Lanczos's use of rounded zeros of Legendre polynomials for a modification of Gaussian quadrature. [4] In this present case, the slight shift in the x_{2} from exact to rounded Chebyshev points does not produce too great a change in the upper bound for the remainder, (the changes for $n=7$ and $n=9$ being appreciably greater than the rest, as seen in Schedule 2). This justifies the terminology "near-optimum", which contrasts sharply with the experience of Lanczos with rounded Gaussian points for quadrature formulas. Thus, quoting his comment on an example [4, p. 410]: "Compared with the Gaussian error, the error has increased by the factor 71, which shows the great sensitivity of the Gaussian method to even small shifts of the zeros." Here, at the worst, for 9 -point hyperosculatory interpolation, the choice of the near-optimum instead of optimum points causes the maximum error to be slightly more than doubled. But even then it is less than $\left(\frac{1}{50}\right)$ th of the maximum error in the corresponding equally-spaced formula.

In attempting to estimate the sensitivity in the upper bound of the absolute value of $\Pi(x)=T_{n}(x)$ for a slight change of Δx_{i} in every x_{i}, we differentiate $T_{n}(x)=\Pi_{i=1}^{n}\left(x-x_{i}\right)$ partially with respect to each x_{i}, obtaining for $D_{n}(x)$, the dominant part of the deviation in $\Pi(x)$, the expression

$$
\begin{equation*}
D_{n}(x)=-\sum_{i=1}^{n} \frac{\Pi_{i=1}^{n}\left(x-x_{i}\right)}{x-x_{i}} \Delta x_{i} \tag{15}
\end{equation*}
$$

Tables of a_{i}, b_{i} and c_{i}

Hyperosculatory Interpolation

Tables of a_{i}, b_{i} and $c_{i}-($ Continued $)$
Hyperosculatory Interpolation

n	i	x_{i}	a_{i}	b_{2}	c_{i}
8	1， 8	∓ 0.98	∓ 0.00927902607870383	－0．35879 6802389020	干7．68100 770770057
8	2， 7	∓ 0.83	± 0.223109053212837	0.983598146465512	± 23.1882627433073
8	3， 6	∓ 0.56	∓ 0.716756930185600	－0．58174 1612410694	∓ 33.1031066120670
8	4， 5	干0．20	± 1.05640042985573	－0．04123 05479155047	± 34.1034918155463
9	1， 9	∓ 0.98	0.00993607162989427	± 0.507949808675992	14.4186983299256
9	2， 8	∓ 0.87	-0.185097730042737	干0．49814 5667393253	－30．70431 01740749
9	3， 7	∓ 0.64	0.611350031671595	± 1.26187148268053	41.2642587109550
9	4， 6	∓ 0.34	－1．19714 564520752	干0．83884 8770161438	－54．56736 40851665
9	5	，	1.46613036949105		59.1774344367215
10	1， 10	干0．99	∓ 0.00700544279227456	-0.416487095661415	干13．63892 25685320
10	2， 9	∓ 0.89	± 0.192842255086323	1.51314143915812	± 46.5372081301798
10	3， 8	∓ 0.71	∓ 0.718652480712282	－1．00533 683199238	干70．78787 62690287
10	4， 7	∓ 0.45	± 1.49339915970670	2.37800070279572	± 93.6981423293455
10	5， 6	干0．16	干2．04728 632616309	0.647500886449945	∓ 104.397091809115

so that

$$
\begin{equation*}
\left|D_{n}(x)\right| \leqq 2^{-n+1} \sum_{i=1}^{n} \frac{\left|\Delta x_{i}\right|}{\left|x-x_{i}\right|} \tag{16}
\end{equation*}
$$

Now for x in the neighborhood of the extrema of $T_{n}(x)$ not close to the ends ± 1 ，the $\left|x-x_{\imath}\right|$ stays large enough for（16）to furnish upper bounds for $\left|D_{n}(x)\right| / 2^{-n+1}$ of the order of just several per cent when Δx_{i} is the roundoff error in employing x_{\imath} to 2D．However（16）breaks down as a practical formula， for larger n and x either at ± 1 or at an extremum close to ± 1 since there $\left|x-x_{\imath}\right|$ is quite small．This might also be expected from the very large derivative of $2^{n-1} T_{n}(x)$ at $x= \pm 1$ ，its magnitude being n^{2} ．Thus，to be on the safe side，to provide for every x in the range（ $-1,1$ ），instead of using（15）or（16），the factor $\Pi(x)=\Pi_{i=1}^{n}\left(x-x_{i}\right)$ for the chosen near－optimum x_{2}＇s was calculated for every n from 2 to 10 ，for $x=-1(.001) 1$ ，and its greatest deviation from zero was found． The percentage increase in the upper bound for the absolute value of the coefficient of $f^{(m)}(\xi)$（see Schedule 1），due to the use of these near－optimum points x_{\imath} instead of optimum points，is given in Schedule 2.

Schedule 2：Increase in Schedule 1 When Using Near－Optimum Points

n	Ordinary	Osculatory	Hyperosculatory
2	0.82%	1.65%	2.5%
3	1.4%	2.8%	4.2%
4	5.1%	10.5%	16%
5	1.7%	3.4%	5.2%
6	2.6%	5.3%	8.0%
7	21%	46%	76%
8	6.2%	13%	20%
9	29%	66%	13%
10	7.6%	16%	25%

5. Tables of Auxiliary Coefficients a_{i}, b_{i} and c_{i}. To facilitate the use of (6)-(14) for these near-optimum points x_{i}, the auxiliary quantities a_{i}, b_{i} and c_{i} are tabulated here for $n=2(1) 10, i=1, \cdots, n$. It reduced the work considerably to choose the constants $k_{m}(n), m=1,2,3$, in (3)-(5), as products of powers of selected prime numbers <200. As a result of this choice, it was easy to give exact values of all the quantities a_{i} for ordinary interpolation, and of a_{i} for $n=2(1) 6$ for osculatory and hyperosculatory interpolation. The remaining quantities a_{i} and all quantities b_{i} and c_{i} are given to 15 S , believed to be correct to within a unit in the last place. In reading entries prefixed by \pm or \mp signs, the upper sign corresponds to the negative x_{i}.

General Dynamics/Astronautics
San Diego, California

1. H. E. Salzer, "New formulas for facilitating osculatory interpolation," J. Res. Nat. Bur. Standards, v. 52, 1954, p. 211-216.
2. H. E. Salzer, "Formulae for hyperosculatory interpolation, direct and inverse," Quart. J. Mech. Appl. Math., v. 12, 1959, p. 100-110.
3. H. E. Salzer, "Alternative formulas for osculatory and hyperosculatory inverse interpolation," Math. Comp., v. 14, 1960, p. 257-261.
4. C. Lanczos, A pplied Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1956, p. 408-410, table on p. 529 .
